

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Institute of Urban and Industrial Water Management Chair of Process Engineering in Hydro Systems

innovatION MODELLING OF A SELECTIVE MEMBRANE CAPACITIVE DEIONIZATION PROCESS

D. Schödel, S. Tas-Köhler, K M N. Islam, H. Rosentreter, A. Lerch

MELPRO 2022, Praque, 19.09.2022

Presentation overview

- 1. Introduction to Membrane Capacitive Deionization technology
- 2. Goals of our innovatION project
- 3. Flow modeling
- 4. Electrochemical modeling

GEFÖRDERT VOM Bundesministerium für Bildung

Membrane Capacitive Deionization (MCDI) Process

Principle of a monovalent selective MCDI with NF membranes

Process principle for implementation of mMCDI (monoselective membrane capacitive deionization) in desalination of saline waters

- Spacer filled flow channel
- Ion exchange membranes for ion retention during desorption
- Nanofiltration membranes to retain polyvalent ions (optional)
- Activated carbon electrodes

innova

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Praque// 19.09.2022

Slide 3

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

... consists of 11 partners from science and industry:

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Praque// 19.09.2022

Slide 4

GEFÖRDERT VOM

Bundesministerium für Bildung

Membrane Capacitive Deionization (MCDI) Process

Principle of a monovalent selective MCDI with NF membranes

Process principle for implementation of mMCDI (monoselective membrane capacitive deionization) in desalination of saline waters

$$I_{el} = \frac{F \cdot Q_F \cdot \sum (c_{F,i} - c_D)}{\eta_I}$$

- I_{el} electrical current
- F Faraday's constant
- $\eta_{\rm I}$ current efficiency
- c_D aimed average diluate concentration
- c_{F,i} feed concentration of ion I

innovat

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Praque// 19.09.2022

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Modeling of a selective Membrane Capacitive Deionization Process

Flow model using ANSYS 2021R2

Goals:

- Geometry optimization in terms of pressure loss
- Optimizing flow distribution in stack arrangements

Spacer filled flow area (Franz, 2021)

Challenges:

- 270 and 500 µm Spacers fill flow channel, filament distance 0,83 and 1,67 mm respectively
 - \rightarrow Very detailed structure is substituted as porous media
- Very high length to height ratio can result in fine mesh
 - \rightarrow hybrid mesh with coarser mesh in middle area

Slide 6

GEEÖRDERT VON

für Bildung

Structured mesh

- Symmetry in flow direction •
- Structured mesh with coarser elements • in geometrically uniform middle part

Contact region showing Inflation Layer and vertical divisions

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Praque// 19.09.2022

Slide 7

GEFÖRDERT VOM

Bundesministerium für Bildung

Mesh study

Solver settings:

- Second Order Equations
- Viscous Model: k-omega SST

Mesh parameters

	mesh1	mesh2	mesh3	mesh4	mesh5
Mesh	4,00E-03	3,20E-03	2,56E-03	2,05E-03	1,64E-03
Body size	3,00E-04	2,40E-04	1,92E-04	1,54E-04	1,23E-04
Multizone spacer	2,70E-04	2,16E-04	1,73E-04	1,38E-04	1,11E-04
Multizone pipes	1,00E-02	8,00E-03	6,40E-03	5,12E-03	4,10E-03
Contact Sizing	3,00E-04	2,40E-04	1,92E-04	1,54E-04	1,23E-04
Contact Sizing 2	3,00E-04	2,40E-04	1,92E-04	1,54E-04	1,23E-04
Inflation	2,00E-05	1,60E-05	1,28E-05	1,02E-05	1,02E-05

innovat

Pressure loss for different meshes

Slide 8

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Mesh study

Mesh parameters

	mesh2.1	mesh2.2	mesh2.3	mesh2.4	mesh2.5
Mesh	3,20E-03	3,20E-03	3,20E-03	3,20E-03	3,20E-03
Body size	2,40E-04	2,40E-04	2,40E-04	2,40E-04	2,40E-04
Multizone spacer	2,16E-04	2,16E-04	2,16E-04	2,16E-04	2,16E-04
Multizone pipes	8,00E-03	8,00E-03	8,00E-03	8,00E-03	8,00E-03
Contact Sizing	2,40E-04	2,40E-04	2,40E-04	2,40E-04	2,40E-04
Contact Sizing 2	2,40E-04	2,40E-04	2,40E-04	2,40E-04	2,40E-04
Inflation	1,60E-05	1,60E-05	1,60E-05	1,60E-05	1,60E-05
Edge Sizing Divisions	2	3	4	6	7

innovat

Pressure loss for different meshes

Slide 9

Bundesministerium für Bildung

Model calibration and validation

- Input parameters (inertial and viscous resistance factors) are calculated from experimental results
- Pressure loss was determined by using a flow test cell

Transparent flow test cell

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Praque// 19.09.2022

GEFÖRDERT VOM

für Bildung

und Forschung

Bundesministeriur

Comparison between simulated and experimental results (Islam, 2022)

Geometry optimization

• Simulating different diffusor shapes with pressure loss reduction of > 20 %

Isotaches (top) and velocity track (bottom) for standard diffusor shape (left) and optimized geometry (right) (Franz, 2021)

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Praque// 19.09.2022

Slide 11

innovat

GEFÖRDERT VOM

Bundesministerium für Bildung

Presentation overview

- 1. Introduction to Membrane Capacitive Deionization technology
- 2. Goals of our innovatION project
- 3. Flow modeling
- 4. Electrochemical modeling

GEFÖRDERT VOM

Bundesministerium für Bildung

Electrochemical model on electrode scale

- Different materials are involved:
 - Electrodes are made from porous materials, therefore ion transport and interactions take place in micro- and macropores
 - Ion exchange membranes or other functional surfaces
- Electrical double layers (EDL) are forming at electrolyte solid interfaces
 - Overall electroneutral, but contains positively and negatively charged regions

Porous electrode structure (Shang, 2017)

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Prague// 19.09.2022

Slide 13

GEFÖRDERT VOM

für Bildung

und Forschung

Bundesministeriu

Electrical Double Layer

Several models to describe the Electrical Double Layer (Liu, 2020):

- Dynamic Langmuir theory
- Modified Donnan (mD)
- Gouy-Chapman-Stern (GCS)

Formation of non-overlapping EDLs and overlapping EDLs (Suss, 2015)

Ion concentration for GCS model (denoted by PB) and a linearized solution (Biesheuvel, 2020)

innovat

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Praque// 19.09.2022

Slide 14

GEFÖRDERT VOM für Bildung

Bundesministerium

Summary and outlook

Flow modelling:

- Mesh element divisions rectangular to flow direction have high impact on simulation results
- Computational effort can be reduced when using coarse mesh in uniform areas (~ 3x less ٠ elements)

Electrochemical model

- Deriving model for 100 % monovalent selective membranes ٠
 - \rightarrow results in 1:1 salt solution (valence of ions) in electrode area

Slide 15

GEEÖRDERT VOM

Thank you for your attention!

www.innovat-ion.de

david.schoedel@ tu-dresden.de

Modelling of a selective membrane capacitive deionization process M. Sc. David Schödel MELPRO 2022, Praque// 19.09.2022

Slide 16

Bundesm

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

References

Biesheuvel, P. M., & Dykstra, J. E. (2020). Physics of Electrochemical Processes. http://www.physicsofelectrochemicalprocesses.com

Franz, M. (2021): Ausarbeitung eines Modells zur Strömungsmodellierung einer MCDI-Zelle zur Salzwasseraufbereitung. Master Thesis Institute of Urban and Industrial Water Management Technische Universität Dresden

Liu, S.; Do, V. Q.; Smith, K. C. (2020): Modeling of Electrochemical Deionization Across Length Scales: Recent Accomplishments and New Opportunities. Current Opinion in Electrochemistry, 22, 72 - 79

Islam, K M N. (2022): Experimental determination of pressure loss to validate a mMCDI-cell CFD-Modell. Master Thesis Institute of Urban and Industrial Water Management Technische Universität Dresden

Rosentreter, H.; Walther, M.; Lerch, A. (2021): Partial Desalination of Saline Groundwater: Comparison of Nanofiltration, Reverse Osmosis and Membrane Capacitive Deionisation. Membranes 2021, 11, 126

Shang, X.; Cusick, R. D.; Smith, K. C. (2017): A Combined Modeling and Experimental Study Assessing the Impact of Fluid Pulsation on Charge and Energy Efficiency in Capacitive Deionization. Journal of The Electrochemical Society, 164, 536-547

Suss, M. E.; Porada, S.; Biesheuvel, P. M.; Yoon, J.; Presser, V. (2015): Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci., 8, 2296

Bundesministeriun für Bildung und Forschung

GEFÖRDERT VOM